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1. Introduction.

Let X be a closed subset of Rd and m ∈ N. Whitney’s extension theorem
[20] gives an extension operator (here and in what follows it means a con-
tinuous linear extension operator) from the space Em(X) of Whitney jets
on X to the space Cm(Rd). In the case m = ∞ such an operator does not
exist in general and several authors have considered the extension problem
in different situations. Mitiagin [9] presented an extension operator for a
closed interval in R, Seeley [15] did so for a half-space of Rd. Applying
Whitney’s method, Stein [16] constructed an extension operator when X is
the closure of a Lipschitz domain in Rd. Bierstone [1] proved the existence
of an extension operator for X with the boundary of Hölder’s type, Tidten
[17] did so for closed subsets of Rd admitting some polynomial cusps. In [11]
(see also [12]) Paw lucki and Pleśniak gave a construction of a such operator
for compact sets satisfying the Markov Property ( see Section 5). In elab-
oration of Whitney’s method Schmets and Valdivia proved in [14] that the
existence of an extension operator Q : E(K) → C∞(Rd) for a compact set
K ⊂ Rd implies the possibility to take such a map for which all extensions
are analytic on Rd \K. For the extension problem in the classes of ultrad-
ifferentiable functions see for instance [2] and [13] and the references given
there.

In this paper we construct an extension operator Q : E(K) → C∞(Rd)
by extending the elements of basis of the space E(K) for some model cases
of a compact set K. The idea to give an extension operator in this manner
goes back to Mitiagin [9].

2. Preliminaries.

Let K ⊂ Rd be a compact set. Suppose that K = Int(K). The space
E(K) of Whitney functions on K is the space of functions f : K → Rd

extendable to C∞- functions on Rd. The topology of Fréchet space in E(K)
is given by the norms

‖f‖p = |f |p + sup

{
|(Rp

z0
f)(j)(z)|

|z − z0|p−|j|
: z, z0 ∈ K, z 6= z0, |j| ≤ p

}
,

p ∈ N0 := {0, 1, ...}, where |f |p = sup{|f (j)(z)| : z ∈ K, |j| ≤ p}, j =
(j1, ..., jd) ∈ Nd

0 with |j| = j1 + ...+ jd and Rp
z0
f(z) = f(z)− T pz0f(z) is the

Taylor remainder. In what follows we will consider only the cases d = 1 or
d = 2 and the following model compact sets:

1) K = {0} ∪
⋃∞
k=1 Ik ⊂ [0, 1] ⊂ R, where Ik = [ak, bk] = [xk − δk, xk + δk]

with ak ↓ 0 and hk := ak − bk+1 > 0 for all k.
2) Kψ = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, |y| ≤ ψ(x)}, where ψ is a nondecreas-

ing function on [0, 1], 0 ≤ ψ(x) ≤ x, ψ(+0) > 0.
We use the Chebyshev polynomials

Tn(x) = cos(n · arccosx), |x| ≤ 1, n ∈ N0.
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Let T̃n be the Chebyshev polynomial considered on R and for fixed inter-
val Ik let T̃nk denote the scaling Chebyshev polynomial, that is T̃nk(x) =
T̃n(x−xk

δk
), and let Tnk be the restriction of T̃nk on Ik, Tnk = 0 otherwise

on K.
By ξnk we denote the functional ξnk(f) = 2

π

∫ π
0
f(xk + δk cos t) cosntdt,

n ∈ N0 (if n = 0, then we take 1 instead of 2 in the coefficient). Clearly, for
fixed k the functionals (ξnk) are biorthogonal to the system (T̃nk).

By | · |−q we denote the dual norm of a functional in the corresponding
space. We adhere to the convention that

∑n
i=m = 0 for m > n and

00 = 1, log will denote the natural logarithm.

3. Basis for the first model case.

Let us give a generalization of the basis construction from [7]. Suppose
that for some constant C0

bk ≤ C0δk, δk ≤ C0hk, k ∈ N.(1)

Let l : N→ N0 be a nondecreasing function. For fixed k ∈ N and n < l(k)

let enk = T̃nk

∣∣∣
[0,bk]∩K

and enk = 0 otherwise on K. If n ≥ l(k), then let

enk = Tnk. To introduce the biorthogonal functionals we take ηnk = ξnk for
n ≥ l(k). If n < l(k), then ηnk be the projection of ξnk on the subspace
spanned by the previous functionals, that is

ηnk = ξnk −
∑
i

ξnk(ei k−1) ξi k−1.

Since ξnk is biorthogonal to all polynomials of degree less than n and to
all ei k−1 which are Ti k−1 for i ≥ l(k − 1), the sum above is only over
i = n, · · · , l(k − 1) − 1. The system of functionals (ηnk)

∞,∞
n=0,k=1 is total on

E(K) and biorthogonal to (enk)
∞,∞
n=0,k=1 (see [7], L.3.2). In order to use the

Dynin-Mitiagin criterion of property of being a basis ([9],T.9):

∀p∃q, C : ‖enk‖p · |ηnk|−q ≤ C, ∀n, k,(2)

we choose the function l in the following way. Since the sequence (δk)
∞
k=1 is

not monotone in general, let δ̃k = max{δj, j ≥ k}. Then δ̃k ↓ 0 and δ̃k ≥ δk.

Let l(k) = [log δ̃−1k−1/ log(3C0)], where [a] denotes the greatest integer in a.
Then l ↑ ∞ and

l(k) ≤ δ−1k−1, (3C0)
l(k) ≤ δ−1k−1, k ≥ 2.(3)

Theorem 1. Let for a compact set K = {0} ∪
⋃∞
k=1 Ik the assumption (1)

hold. Then the system {enk, ηnk}∞,∞n=0,k=1 is a basis in the space E(K).

Proof : Fix p ∈ N0. Let q = 3p+ 3. To simplify notation here and in what
follows we use the same letter C for any coefficient which does not depend
on n and k.
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We first obtain some estimations for the case n < l(k), k ∈ N. For n < p
L.4.2 in [7] and (1) imply

‖enk‖p ≤ C2pp! δ−nk h−pk−1 ≤ Cδ−nk δ−pk−1.

If p ≤ n < l(k), then similarly

‖enk‖p ≤ C2nnp δ−nk bn−pk h−pk−1 ≤ C2llpδ−pk δ−pk−1.

Thus in both cases, applying (3) we see that

‖enk‖p ≤ Cδ
−min(n,p)
k δ−2p−1k−1 .(4)

On the other hand, for functionals we get as in [7]

l(k−1)−1∑
i=n

|ξnk(ei k−1)| ≤
l−1∑
i=n

(
δk
δk−1

)n(2
xk−1 − xk
δk−1

+ 3)i < (
δk
δk−1

)n (3C0)
l(k)

< ( δk
δk−1

)n δ−1k−1, by (3). Therefore, by L.4.1 in [7]

|ηnk|−q ≤ C [δqk + δq−1k−1(δk/δk−1)
n].

Besides, ( δk
δk−1

)n ≤ δ
min(n,p)
k δ−p−1k−1 . In fact, for n ≤ p it is trivial; for n > p

(1) implies that δk < C0δk−1 and ( δk
δk−1

)n−p ≤ C l
0 < δ−1k−1, by (3). Thus,

|ηnk|−q ≤ C [δqk + δ
min(n,p)
k δq−p−2k−1 ].(5)

Now for given l(k) and q let us fix kq such that l(k) ≥ q. We decompose
N0 × N into three disjoint zones: Z0 = {(n, k) : 1 ≤ k ≤ kq, 0 ≤ n < m :=
max(q, l(k))}, Z1 = {(n, k) : 1 ≤ k, m ≤ n}, Z2 = {(n, k) : kq < k, n <
l(k)}.

The zone Z0 contains only finite number of elements, hence the products
‖enk‖p · |ηnk|−q are uniformly bounded here.

If (n, k) ∈ Z1, then n ≥ l(k). Here as in T.5.1 from [7] we have ‖Tnk‖p ≤
Cn2pδ−pk and |ξnk|−q ≤ C (δk/n)q. Therefore, the products ‖Tnk‖p · |ξnk|−q
are uniformly bounded as well.

The same conclusion can be drawn for the zone Z2 by (4) and (5) due to
the choice of q. This gives (2), and the proof is complete. 2

4. Continuous linear extension operator .

For compact sets from the previous section (under the assumption of
monotonicity of (δk), (hk)) we have the following geometric criterion of the
extension property (see [6], T.3): an extension operator exists if and only if
for some constant M and for all k

δk ≥ δMk−1.(6)

Let us show that whenever this operator exists (for compact sets with (1))
it can be given by extending of the basis elements of the space E(K).

Given an interval [a, b] and τ > 0 let ω = ω(a, b, τ, x) be a C∞−
function with the following properties: ω(x) = 1 for x ∈ [a, b]; ω(x) = 0 if
dist(x, [a, b]) ≥ τ and |ω(j)|0 ≤ Cjτ

−j for some constant Cj, j ∈ N0.
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Set τnk = C−20 (n2 + 1)−1δk for (n, k) ∈ N0 × N. Then min{hk, hk−1} ≥
τnk,∀n, k, as is easy to see. Let ωnk(x) = ω(0, bk, τnk, x) for n < l(k) and
ωnk(x) = ω(ak, bk, τnk, x) for n ≥ l(k). Clearly,

|ω(j)
nk |0 ≤ C(n2 + 1)j δ−jk , j ∈ N0, (n, k) ∈ N0 × N.(7)

Define ẽnk = T̃nk · ωnk and

Q : E(K)→ C∞(R) : f 7→
∞∑
k=1

∞∑
n=0

ηnk(f) · ẽnk.

Theorem 2. Let for a compact set K = {0} ∪
⋃∞
k=1 Ik the assumptions (1)

and (6) hold. Then Q is a continuous linear extension operator.

Proof : Since ẽnk|K = enk due to the choice of τnk, we see that Q is an
extension operator. Clearly it is linear. Let us show that Q is well-defined
and continuous. Given p ∈ N0 let q = (M + 3)p + 4. Let the function l(k)
and kq be the same as in the previous section.

For each polynomial P the extremal properties of Chebyshev’s polynomi-
als imply the following bound

|P (x)| ≤ |x+
√
x2 − 1|degP sup{|P (x)| : |x| ≤ 1}, |x| > 1.

Therefore we get |T̃ (i)
n (1+ε)| ≤ (1+2

√
ε)nT

(i)
n (1) if ε ≤ 1/4 and |T̃ (i)

n (x)| ≤
e2(n2 + 1)i for |x| ≤ 1 + (n2 + 1)−1. It follows that if dist(x, Ik) ≤ τnk, then

|T̃ (i)
nk (x)| ≤ e2(n2 + 1)iδ−ik .
Using the Leibnitz formula and (7) we get for n ≥ l(k)

|ẽnk|p ≤ C(n2 + 1)pδ−pk .(8)

Consider 0 < n < l(k) and x with dist(x, [0, bk]) ≤ τnk. The polynomial
T̃nk can be written in the form

T̃nk(x) = 2n−1δ−nk

n∏
j=1

(x− θj),(9)

where θj ∈ Ik. Since |x− θj| < bk + τnk < (C0 + 1)δk, an easy computation
shows that

|T̃ (i)
nk (x)| ≤ 2n−1δ−nk n−i[(C0 + 1)δk]

n−i < δ−ik δ
−i−1
k−1 ,

by (3). From this as before

|ẽnk|p ≤ Cδ−pk δ−2p−1k−1 .(10)

Clearly it is valid also for n = 0.
Fix f ∈ E(K). To deal with |Q(f)|p, we use the following decomposition

corresponding to the chosen zones

|Q(f)|p ≤

 kq∑
k=1

m−1∑
n=0

+
∞∑
k=1

∞∑
n=m

+
∞∑

k=kq+1

l(k)−1∑
n=0

 |ηnk(f)| · |ẽnk|p.
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Let us consider the double sums above separately. The first sum contains
only a finite number of items, hence it is bounded from above by C‖f‖q,
where the constant C does not depend on n and k.

For the terms of the second sum we have as before

|ηnk(f)| = |ξnk(f)| ≤ C (δk/n)q‖f‖q,

which gives the desired conclusion when combined with (8).
For the last sum we can rewrite (5) in the form

|ηnk(f)| ≤ C (δqk + δq−p−2k−1 )‖f‖q.

The number of summands with respect to n here is l(k), which is smaller
than δ−1k−1. Taking into account (10) and (6), we see that the last series
converges as well.

Thus the operator Q is well defined and |Q(f)|p ≤ C‖f‖q.
2

Remark. The case of a compact setK with the property δk = o(δMk−1),∀M,
corresponds to a plane domain with the sharp cusp. The basis in the space
E(K) can be constructed here as well, but the extension operator does not
exist. Analytically speaking, there are no τnk suitable for all n, k from the
zone Z2.

5. Comparing two methods of extension .

In [11] (see also [12]) Paw lucki and Pleśniak suggested an extension op-
erator Q : E(K) → C∞(Rd) in the form of a series containing Lagrange
interpolation polynomials with Fekete-Leja system of knots. The basic as-
sumption for their construction was the following Markov Property of a
compact set K:

∃C, µ : |P (j)|0 ≤ C · (degP )µ|j||P |0, ∀j ∈ Nd
0, ∀P.

Here P is a polynomial, | · |0 is considered in the space E(K).
Our method of extension has the disadvantage of being very special. At

the same time it is “more explicit”, since the disposition of Fekete-Leja
system of extremal points is only known for a few types of compact sets.
Besides it can be applied for some classes of compact sets without Markov’s
Property.

Consider, as an example, the case

δk+1 = δMk , bk = C0δk, k ∈ N,(11)

with M ≥ 2, C0 ≥ 6. Then the hypothesis of Theorem 2 is fulfilled but the
Markov inequality is not satisfied for certain polynomials on K. ( Compare
this with [5].)

Proposition 1. The compact set K under the assumption (11) does not
have the Markov property.
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Proof : Without loss of generality let δk = exp(−Mk), k ∈ N. Fix m ∈ N
and consider the polynomial P (x) = x ·

∏m
k=1 γk · T̃nkk(x), where γk =

T̃−1nkk
(0). We take nm = 1, nk = Mm+(m−1)+···+(k+1) for k ≤ m− 1.

Clearly, P ′(0) = 1 and degP = 1 +
∑m

k=1 nk < Mm2
. We will show that

|P (x)| ≤ bm, x ∈ K.
It will follow the absence of the Markov property of K as

1 ≤ CMµm2

C0 exp(−Mm), m→∞
is a contradiction for fixed C, µ.

Fix x ∈ K. If x ≤ bm, then |γk · T̃nkk(x)| ≤ 1, k = 1, 2, ...,m, and the
desired bound of |P (x)| is obvious. Consider now x ∈ Ij, 1 ≤ j ≤ m− 1.
Then

|P (x)| ≤ bj|γj|
m∏

k=j+1

|γk · T̃nkk(x)|,

as all other terms of the product are less than 1.
To estimate the remaining terms, we use the bound

2n−1(∆k/δk)
n < |T̃nk(x)| < 2n−1(∆k/δk + 2)n, n > 0, ∆k = dist(x, Ik),

which is clear from (9).

Therefore, |γk · T̃nkk(x)| ≤ (
bj
ak

)nk = (
C0δj

(C0−2)δk
)nk and |γj| < 2(2C0−4)−nj .

Hence,

|P (x)| < 2C0 exp(−M j)(2C0 − 4)−nj exp
m∑

k=j+1

nk[M
k −M j + log(

C0

C0 − 2
)].

Since M j ≥M > log 3
2
≥ log( C0

C0−2) due to the choice of M, C0;

2 exp(−M j) < 1 and nkM
k = nk−1, we have

log(|P (x)|/bm) < Mm − nj log(2C0 − 4) +
m−1∑
k=j

nk.

From Mm+
∑m−1

k=j nk ≤ 2nj, log(2C0−4) > 2 it follows that the expres-

sion on the right is negative and |P |0 ≤ bm, as claimed. 2

6. Bases and extension operators for the space C∞(Ω̄ψ).

We now turn to the case of the compact set Kψ being the closure of the
plane domain Ωψ = IntKψ of the cusp form. Since the set Kψ is regular
in Whitney sense, we have C∞(Ω̄ψ) ' E(Ω̄ψ), where C∞(Ω̄) is the space
of infinitely differentiable in Ω functions such that the functions and all
their derivatives are uniformly continuous on the domain, equipped with
the norms (| · |p)∞p=0.

To analyze topological properties of the space C∞(Ω̄) the property Ω̄ of
being uniformly polynomially cuspidal (see [10], [11]) is important. For our
case it can be given by the following condition:
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∃N, τ0 : ψ(τ) ≥ τN , 0 ≤ τ ≤ τ0.(12)

(Without loss of generality we don’t allow the domain Ωψ to have a cusp
at the points (1,±ψ(1)). )

Due to the Vogt-Tidten criterion ([17],[19],T.2.4) an extension operator
Q : E(K) → C∞(Rd) exists for a compact set K with Int(K) 6= ∅ if and
only if the space E(K) is isomorphic to the space s of rapidly decreasing
sequences. In particular Tidten [17] (see also [1]) proved the existence of a
such operator for compact sets admitting polynomial cusps.

On the other hand, for the domain Ωψ we have the following characteri-
zation([4],T.1.3):

Theorem 3. The following statements are equivalent:
(i) the function ψ satisfies the condition (12);
(ii) the compact set Ω̄ψ has Markov’s property;
(iii) C∞(Ω̄ψ) ' s.

For the convenience of the reader we briefly sketch the proofs.
The implication (i)⇒ (ii) can be obtained by using the Hölder continuity

property of the Green function with the pole at infinity for the domain C\Ω̄ψ

(see, e.g. [10], where Paw lucki and Pleśniak proved the Markov property
for wide class of uniformly cuspidal subsets in Rd.)

For (ii) ⇒ (iii) we can use [3], where a basis was constructed in the
space C∞(Ω̄) for the domain Ω ⊂ Rd with the boundary of Hölder’s type
(see also [22] for a more general case). The basis can be constructed out of

the polynomials (Pn)∞n=0 ortogonalized in the Sobolev space W
(r)
2 (Ω) with

certain natural r depending on the domain. In our case one can take r > µ+2
4

with µ being fixed from the definition of the Markov property. Then for any
function from the space C∞(Ω̄ψ) the sequence of coefficients of its basis
expansion rapidly decreases.

To prove (iii) ⇒ (i) we use the fact that the space C∞(Ω̄ψ) belongs to
the class D1 ([21]) or has the dominating norm property DN ([18]) as the
space which is isomorphic to s, that is ∃p : ∀q ∃r, C :

|f |2q ≤ C|f |p|f |r, f ∈ C∞(Ω̄ψ),(13)

where p, q, r ∈ N0, C > 0.
Suppose, contrary to our claim, that for some sequence (τn), τn ↓ 0 we

have

ψ(τn) < τnn , n ∈ N.(14)

For the function ωn(x) = ω(0, τn/2, τn/2, x) let us take
fn(x, y) = yp+1ωn(x), (x, y) ∈ Ωψ, n ∈ N, where p is fixed from the definition
above. Set q = p+ 1 and fix r, C such that (13) holds. Using (14), it is easy

to check that |f |p ≤ Cpψ(τn) < Cpτ
n
n , |f |q ≥ |f

(q)
yq (0, 0)| ≥ (p + 1)!, |f |r ≤

Crτ
p+1−r
n , where the constants Cp, Cr do not depend on n.
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Substituting these bounds into (13) we get a contradiction for big n.
Hence, (14) is impossible.

Thus, whenever an extension operator Q : C∞(Ω̄ψ) → C∞(R2) exists,
the construction of Paw lucki and Pleśniak gives an explicit form of Q. At
the same time it can be given by extending the basis elements (Pn)∞n=0 of
the space C∞(Ω̄ψ).

In fact, let ω̃(x, y) = ω̃(Ω̄ψ, τ, x, y) ∈ C∞(R2) be a function such that
ω̃(x, y) = 1 for (x, y) ∈ Ω̄ψ, ω̃(x, y) = 0 if dist((x, y), Ω̄ψ) ≥ τ and |ω̃|p ≤
Cpτ

−p, p ∈ N0.
Following Pleśniak ([12], T.3.3), by Markov‘s Property of Ω̄ψ we have for

some constants M,µ0 and for every polynomial P with degP > 0 the bound
|P (x, y)| ≤M |P |0 if dist((x, y), Ω̄ψ) ≤ (degP )−µ0 . We can certainly assume
that µ0 is the same as µ in the definition of the Markov Property, since
otherwise we replace the smaller value by the larger one.

After normalization of the basis polynomials (Pn)∞n=0 we have |Pn|0 =
1, n ∈ N0. Clearly, degPn ≤ n. Extending the polynomials analytically we
take P̃n = Pnω̃n, where ω̃n = ω̃(Ω̄ψ, (degPn)−µ, x, y) for n ≥ 1 and ω̃0 =
ω̃(Ω̄ψ, 1, x, y).

Using the Leibnitz rule and the Markov property of Ω̄ψ we get |P̃n|p ≤
Dp(1+degPn)µp, where Dp does not depend on n. But in the basis expansion
f =

∑∞
n=0 ξn(f)Pn the sequence (ξn(f)) is rapidly decreasing, therefore the

operator

Q : C∞(Ω̄ψ)→ C∞(R2) : f 7→
∞∑
n=0

ξn(f) · P̃n

is continuius and the following proposition holds.

Proposition 2. If there exists a continuous linear extension operator Q :
C∞(Ω̄ψ) → C∞(R2), then it can be given by replacing all basis elements in
the basis expansion of a function by their extensions with tilde.

7. The case of graduated cusp.

Fix the sequence (ak)
∞
k=1 with the properties: ak ↓ 0; ∃C : ak

C
≤ ak+1 ≤

(1 − 1
C

)ak, ∀k. For any sequence (ψk)
∞
k=1 with ψ1 ≤ 1, ψk ↓ 0 consider the

step function ψ : ψ(x) = ψk if ak ≤ x < ak−1, k ∈ N (here a0 = 1) and the
corresponding domain Ωψ in the form of graduated cusp. In [8] a basis was
constructed in the space C∞(Ω̄ψ) for arbitrary sharpness of the cusp Ωψ. If
the function ψ satisfies (12), that is ∃N :

ψk ≥ aNk , k ∈ N,(15)

then there exists an extension operator, which can be given by both methods
considered before.

On the other hand, following [8] we can construct a special basis in the
space C∞(Ω̄ψ). At first we can choose a sequence (bk)

∞
k=1 such that

bk − ak = 2δk ↓ 0 and the condition (1) holds. Denote by Rk the rectangle
10



[ak, bk]× [−ψk, ψk], by R′k the rectangle [bk, ak−1]× [−ψk, ψk].
Set K = {0} ∪

⋃∞
k=1Rk.

Let enmk(x, y) = enk(x)Tm( y
ψk

)
∣∣∣
K
, n,m ∈ N0, k ∈ N. For f ∈ E(K) let

ξnmk(f) =
4

π2

∫ π

0

∫ π

0

f(xk + δk cos t, ψk cos τ) cosnt cosmτdtdτ

( here instead of 4 we take 1 if n = m = 0 or 2 if nm = 0, n+m 6= 0 ). Set
ηnmk(f) = ξnmk(f) for n ≥ l(k), where l(k) is the same as in Section 3. If
n < l(k) then let

ηnmk(f) =
4

π2

∫ π

0

∫ π

0

[f(xk + δk cos t, ψk cos τ) cosnt−

f(xk−1 + δk−1 cos t, ψk cos τ) ·
l(k−1)−1∑
i=n

ξnk(ei k−1) cos it] cosmτdtdτ.

Arguing as in [8], we see that the system {enmk, ηnmk}∞,∞n,m=0,k=1 is a basis
in the space E(K). Moreover the result still holds if we drop the assumption
(9) in [8]: ψk ≤ δ2k, k ∈ N, which was suitable for the sharp cusp but is
unnecessarily restrictive here.

The task now is to construct a basis in the space C∞(Ω̄ψ). Let ẽnmk(x, y) =
ẽnk(x)Tm( y

ψk
), (x, y) ∈ Ωψ, where ẽnk is the same as in Section 4. The deriv-

ative ẽ
(j)
nk (x) has the same (up to a factor Cj) upper bound as e

(j)
nk (x) due to

the choice of the parameters τnk in the smooting functions ωnk. Therefore
the projection

S : C∞(Ω̄ψ)→ C∞(Ω̄ψ) : f 7→
∞∑
k=1

∞∑
n=0

∞∑
m=0

ηnmk(f |K) · ẽnmk

is well defined and continuous.
In this way we have the representation C∞(Ω̄ψ) = X1 ⊕ X0 with X1 =

S(C∞(Ω̄ψ)), X0 = {f ∈ C∞(Ω̄ψ) : suppf ⊂
⋃∞
k=2R

′
k} = (⊕∞k=2Sk(C

∞(Ω̄ψ)))s,
where Sk(f) = f − S(f) on R′k and 0 otherwise on Ωψ. The functions
(ẽnmk)

∞,∞
n,m=0,k=1 give a basis in the subspace X1. For the basis in the sub-

space Sk(C
∞(Ω̄ψ)) we take h̃nmk(x, y) = h̃nk(x)Tm( y

ψk
), where h̃nk(x) =

hn(tan(π
2

2x−bk−ak−1

bk−ak−1
)) for bk < x < ak−1, h̃nk(x) = 0 otherwise on [0, b1] and

hn is a classical Hermite function. Here we have used Mitiagin’s construction
([9], L.26) of the basis in the space C∞0 [−1, 1] of C∞− functions vanishing
at the endpoints of the interval [−1, 1](see also [8]).

Our last goal is to construct an extension operator using this special basis.
Set ω̂(y) = ω(−ψk, ψk, (m2 + 1)−1ψk, y), k ∈ N, m ∈ N0.

Let ênmk(x, y) = ẽnk(x)T̃m( y
ψk

)ω̂(y) and ĥnmk(x, y) = h̃nk(x)T̃m( y
ψk

)ω̂(y).

Now the functions with hat belong to the space C∞(R2). Since the proof
of continuity of the corresponding extension operator is quite similar to
the above, the details are left to the reader. Note that for the estimation
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|Q(f)|p ≤ C|f |q we can take q(p) ≥ 3 + p ·max{N, 3}, where N is given in
(15).

Proposition 3. Let a graduated cusp domain Ωψ be defined by the sequence

(ψk) satisfying (15). Then the functions ẽnmk, h̃nmk+1, n,m ∈ N0, k ∈ N
form a special basis in the space C∞(Ω̄ψ). If in the basis expansion of a
function we replace all basis elements with tilde by their extensions with hat,
then the received map is a continuous linear extension operator C∞(Ω̄ψ)→
C∞(R2).
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